/********************************************************************************* * MIT License * * Copyright (c) 2020 Gregg E. Berman * * https://github.com/HomeSpan/HomeSpan * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * ********************************************************************************/ #include #include #include "SRP.h" #include "HAP.h" ///////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////// SRP6A::SRP6A(){ uint8_t tBuf[768]; // temporary buffer for staging uint8_t tHash[64]; // temporary buffer for storing SHA-512 results char N3072[]="FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33" "A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864" "D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E2" "08E24FA074E5AB3143DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF"; // initialize MPI structures mbedtls_mpi_init(&N); mbedtls_mpi_init(&g); mbedtls_mpi_init(&s); mbedtls_mpi_init(&x); mbedtls_mpi_init(&v); mbedtls_mpi_init(&A); mbedtls_mpi_init(&b); mbedtls_mpi_init(&B); mbedtls_mpi_init(&S); mbedtls_mpi_init(&k); mbedtls_mpi_init(&u); mbedtls_mpi_init(&K); mbedtls_mpi_init(&M1); mbedtls_mpi_init(&M1V); mbedtls_mpi_init(&M2); mbedtls_mpi_init(&_rr); mbedtls_mpi_init(&t1); mbedtls_mpi_init(&t2); mbedtls_mpi_init(&t3); // load N and g into mpi structures mbedtls_mpi_read_string(&N,16,N3072); mbedtls_mpi_lset(&g,5); // compute k = SHA512( N | PAD(g) ) mbedtls_mpi_write_binary(&N,tBuf,384); // write N into first half of staging buffer mbedtls_mpi_write_binary(&g,tBuf+384,384); // write g into second half of staging buffer (fully padded with leading zeros) mbedtls_sha512_ret(tBuf,768,tHash,0); // create hash of data mbedtls_mpi_read_binary(&k,tHash,64); // load hash result into mpi structure k } ////////////////////////////////////// void SRP6A::createVerifyCode(const char *setupCode, uint8_t *verifyCode, uint8_t *salt){ uint8_t tBuf[80]; // temporary buffer for staging uint8_t tHash[64]; // temporary buffer for storing SHA-512 results char icp[22]; // storage for I:P randombytes_buf(salt,16); // generate 16 random bytes using libsodium (which uses the ESP32 hardware-based random number generator) mbedtls_mpi_read_binary(&s,salt,16); sprintf(icp,"Pair-Setup:%.3s-%.2s-%.3s",setupCode,setupCode+3,setupCode+5); // compute x = SHA512( s | SHA512( I | ":" | P ) ) mbedtls_mpi_write_binary(&s,tBuf,16); // write s into first 16 bytes of staging buffer mbedtls_sha512_ret((uint8_t *)icp,strlen(icp),tBuf+16,0); // create hash of username:password and write into last 64 bytes of staging buffer mbedtls_sha512_ret(tBuf,80,tHash,0); // create second hash of salted, hashed username:password mbedtls_mpi_read_binary(&x,tHash,64); // load hash result into mpi structure x // compute v = g^x % N mbedtls_mpi_exp_mod(&v,&g,&x,&N,&_rr); // create verifier, v (_rr is an internal "helper" structure that mbedtls uses to speed up subsequent exponential calculations) mbedtls_mpi_write_binary(&v,verifyCode,384); // write v into verifyCode } ////////////////////////////////////// void SRP6A::loadVerifyCode(uint8_t *verifyCode, uint8_t *salt){ mbedtls_mpi_read_binary(&s,salt,16); mbedtls_mpi_read_binary(&v,verifyCode,384); } ////////////////////////////////////// void SRP6A::createPublicKey(){ getPrivateKey(); // create and load b (random 32 bytes) // compute B = kv + g^b %N mbedtls_mpi_mul_mpi(&t1,&k,&v); // t1 = k*v mbedtls_mpi_exp_mod(&t2,&g,&b,&N,&_rr); // t2 = g^b %N mbedtls_mpi_add_mpi(&t3,&t1,&t2); // t3 = t1 + t2 mbedtls_mpi_mod_mpi(&B,&t3,&N); // B = t3 %N = ACCESSORY PUBLIC KEY } ////////////////////////////////////// void SRP6A::getPrivateKey(){ uint8_t privateKey[32]; randombytes_buf(privateKey,16); // generate 32 random bytes using libsodium (which uses the ESP32 hardware-based random number generator) mbedtls_mpi_read_binary(&b,privateKey,32); } ////////////////////////////////////// void SRP6A::createSessionKey(){ uint8_t tBuf[768]; // temporary buffer for staging uint8_t tHash[64]; // temporary buffer for storing SHA-512 results // compute u = SHA512( PAD(A) | PAD(B) ) mbedtls_mpi_write_binary(&A,tBuf,384); // write A into first half of staging buffer mbedtls_mpi_write_binary(&B,tBuf+384,384); // write B into second half of staging buffer mbedtls_sha512_ret(tBuf,768,tHash,0); // create hash of data mbedtls_mpi_read_binary(&u,tHash,64); // load hash result into mpi structure u // compute S = (Av^u)^b %N mbedtls_mpi_exp_mod(&t1,&v,&u,&N,&_rr); // t1 = v^u %N mbedtls_mpi_mul_mpi(&t2,&A,&t1); // t2 = A*t1 mbedtls_mpi_exp_mod(&S,&t2,&b,&N,&_rr); // S = t2^b %N // compute K = SHA512( S ) mbedtls_mpi_write_binary(&S,tBuf,384); // write S into staging buffer (only first half of buffer will be used) mbedtls_sha512_ret(tBuf,384,tHash,0); // create hash of data mbedtls_mpi_read_binary(&K,tHash,64); // load hash result into mpi structure K. This is the SRP SHARED SECRET KEY mbedtls_mpi_write_binary(&K,sharedSecret,64); // store SHARED SECRET in easy-to-use binary (uint8_t) format } ////////////////////////////////////// int SRP6A::verifyProof(){ uint8_t tBuf[976]; // temporary buffer for staging uint8_t tHash[64]; // temporary buffer for storing SHA-512 results size_t count=0; // total number of bytes for final hash size_t sLen; mbedtls_mpi_write_binary(&N,tBuf,384); // write N into staging buffer mbedtls_sha512_ret(tBuf,384,tHash,0); // create hash of data mbedtls_sha512_ret((uint8_t *)g3072,1,tBuf,0); // create hash of g, but place output directly into staging buffer for(int i=0;i<64;i++) // H(g) -> H(g) XOR H(N), with results in first 64 bytes of staging buffer tBuf[i]^=tHash[i]; mbedtls_sha512_ret((uint8_t *)I,strlen(I),tBuf+64,0); // create hash of userName and concatenate result to end of staging buffer mbedtls_mpi_write_binary(&s,tBuf+128,16); // concatenate s to staging buffer sLen=mbedtls_mpi_size(&A); // get actual size of A mbedtls_mpi_write_binary(&A,tBuf+144,sLen); // concatenate A to staging buffer. Note A is NOT padded with leading zeros (so may be less than 384 bytes) count=144+sLen; // total bytes written to staging buffer so far sLen=mbedtls_mpi_size(&B); // get actual size of B mbedtls_mpi_write_binary(&B,tBuf+count,sLen); // concatenate B to staging buffer. Note B is NOT padded with leading zeros (so may be less than 384 bytes) count+=sLen; // increment total bytes written to staging buffer mbedtls_mpi_write_binary(&K,tBuf+count,64); // concatenate K to staging buffer (should always be 64 bytes since it is a hashed value) count+=64; // final total of bytes written to staging buffer mbedtls_sha512_ret(tBuf,count,tHash,0); // create hash of data mbedtls_mpi_read_binary(&M1V,tHash,64); // load hash result into mpi structure M1V if(!mbedtls_mpi_cmp_mpi(&M1,&M1V)) // cmp_mpi uses same logic as strcmp: returns 0 if EQUAL, otherwise +/- 1 return(1); // success - proof from HAP Client is verified return(0); } ////////////////////////////////////// void SRP6A::createProof(){ uint8_t tBuf[512]; // temporary buffer for staging uint8_t tHash[64]; // temporary buffer for storing SHA-512 results // compute M2 = H( A | M1 | K ) mbedtls_mpi_write_binary(&A,tBuf,384); // write A into staging buffer mbedtls_mpi_write_binary(&M1,tBuf+384,64); // concatenate M1 (now verified) to staging buffer mbedtls_mpi_write_binary(&K,tBuf+448,64); // concatenate K to staging buffer mbedtls_sha512_ret(tBuf,512,tBuf,0); // create hash of data mbedtls_mpi_read_binary(&M2,tBuf,64); // load hash results into mpi structure M2 } ////////////////////////////////////// int SRP6A::loadTLV(kTLVType tag, mbedtls_mpi *mpi){ int nBytes=mbedtls_mpi_size(mpi); uint8_t *buf=HAPClient::tlv8.buf(tag,nBytes); if(!buf) return(0); mbedtls_mpi_write_binary(mpi,buf,nBytes); return(1); } ////////////////////////////////////// int SRP6A::writeTLV(kTLVType tag, mbedtls_mpi *mpi){ int nBytes=HAPClient::tlv8.len(tag); if(nBytes>0){ mbedtls_mpi_read_binary(mpi,HAPClient::tlv8.buf(tag),nBytes); return(1); }; return(0); } ////////////////////////////////////// void SRP6A::print(mbedtls_mpi *mpi){ char sBuf[1000]; size_t sLen; mbedtls_mpi_write_string(mpi,16,sBuf,1000,&sLen); Serial.print((sLen-1)/2); // subtract 1 for null-terminator, and then divide by 2 to get number of bytes (e.g. 4F = 2 characters, but represents just one mpi byte) Serial.print(" "); Serial.println(sBuf); } //////////////////////////////////////