Update Tutorials.md

This commit is contained in:
HomeSpan 2024-01-25 06:32:49 -06:00 committed by GitHub
parent 5020fae497
commit 9b6f5ef59e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 2 additions and 2 deletions

View File

@ -133,7 +133,7 @@ Demonstrates how to create Custom Services and Custom Characteristics in HomeSpa
Demonstrates how to implement a fully programmable Light Accessory Hub that allows the user to *dynamically* add/delete up to 12 Light Accessories directly through a device-hosted *web interface* or via HomeSpan's *command-line inteface*. Each light can be configured as dimmable/non-dimmable with either no color control, full RGB color control, or color-temperature control. Builds upon many of the techniques used in [Example 20](../examples/20-AdvancedTechniques) Demonstrates how to implement a fully programmable Light Accessory Hub that allows the user to *dynamically* add/delete up to 12 Light Accessories directly through a device-hosted *web interface* or via HomeSpan's *command-line inteface*. Each light can be configured as dimmable/non-dimmable with either no color control, full RGB color control, or color-temperature control. Builds upon many of the techniques used in [Example 20](../examples/20-AdvancedTechniques)
### [RemoteSensors](../examples/Other%20Examples/RemoteSensors) ### [RemoteSensors](../examples/Other%20Examples/RemoteSensors)
Demonstrates how *SpanPoint* can be used to transmit messages from battery-powered Remote Devices running light-weight sketches that measure the local temperature, to a wall-powered Main Device running a full HomeSpan sketch implementing Temperature Sensor Accessories. See [SpanPoint: Point-to-Point Communication between ESP32 Devices](NOW.md) for full details regarding the *SpanPoint* class and all of its methods. Demonstrates how *SpanPoint* can be used to transmit messages from battery-powered Remote Devices running light-weight sketches that measure the local temperature, to a wall-powered Main Device running a full HomeSpan sketch implementing Temperature Sensor Accessories. See [SpanPoint: Point-to-Point Communication between ESP32 Devices](NOW.md) for full details regarding the *SpanPoint* class and all of its methods
### [FadingLED](../examples/Other%20Examples/FadingLED) ### [FadingLED](../examples/Other%20Examples/FadingLED)
Demonstrates how the *LedPin* class can use the ESP32's built-in fading control to automatically fade an LED from from one level of brightness to another over a specified period of time. See the [LedPin](PWM.md#pulse-width-modulation-pwm) page for full details Demonstrates how the *LedPin* class can use the ESP32's built-in fading control to automatically fade an LED from from one level of brightness to another over a specified period of time. See the [LedPin](PWM.md#pulse-width-modulation-pwm) page for full details
@ -145,7 +145,7 @@ Demonstrates how to use the *StepperControl* class to operate a stepper motor.
Demonstrates how to create a Custom Partition Scheme for your sketch by adding a *partitions.csv* file to your sketch folder. Can be used to expand the size of the non-volatile-storage (NVS) partition, which may be needed when creating a HomeSpan device with many Accessories whose Characteristics you want to save in NVS Demonstrates how to create a Custom Partition Scheme for your sketch by adding a *partitions.csv* file to your sketch folder. Can be used to expand the size of the non-volatile-storage (NVS) partition, which may be needed when creating a HomeSpan device with many Accessories whose Characteristics you want to save in NVS
### [ExternalReference](../examples/Other%20Examples/ExternalReference) ### [ExternalReference](../examples/Other%20Examples/ExternalReference)
Demonstrates how to access Characteristics of Services from outside those Services, such as from within the main Arduino `loop()`. In this sketch we re-create the two LEDs in Example 5 with an added function in the main Arduino `loop()` that checks if both LEDs are on at the same time, and if so, they are automatically turned off. Demonstrates how to access Characteristics of Services from outside those Services, such as from within the main Arduino `loop()`. In this sketch we re-create the two LEDs in Example 5 with an added function in the main Arduino `loop()` that checks if both LEDs are on at the same time, and if so, they are automatically turned off
--- ---